
Encoding and Decoding
in Swift
Kaitlin Mahar

Software Engineer @ MongoDB

@k__mahar @kmahar

What is encoding?

EncoderSwift type External
representation

etc...

Scalar (e.g. Int)
struct
class
enum

What is decoding?

DecoderSwift type External
representation

etc...

Scalar (e.g. Int)
struct
class
enum

Why would I want to encode and decode data?

● Allows data transfer in and out of your application

○ Communicating with a REST API via JSON

○ Reading from and writing to a database

○ Importing and exporting data from files

Swift 4 introduced a
standardized approach to
encoding and decoding.

How does it actually work?

Basic Usage

An Encodable type knows how to
write itself to an Encoder.

Types With Built-In Encodable Support

● Numeric types
● Bool
● String
● If the values they contain are Encodable:

○ Array
○ Set
○ Dictionary
○ Optional

● Common Foundation types: URL, Data, Date, etc.

● Automatic conformance if all properties are Encodable

● Types can provide custom implementations

● Format agnostic: write it once, works with any Encoder!

A Decodable type knows how to
initialize by reading from a Decoder.

Types With Built-In Decodable Support

● Numeric types
● Bool
● String
● If the values they contain are Decodable:

○ Array
○ Set
○ Dictionary
○ Optional

● Common Foundation types: URL, Data, Date, etc.

● Automatic conformance if all properties are Decodable

● Types can provide custom implementations

● Write it once, works with any Decoder

… and that's it!

Making Types Codable

Using Encoders and Decoders

Using An Encoder

JSONEncoderEncodable
value of type T

UTF-8
encoded Data

Using An Encoder

{
 "name":"Roscoe",
 "color":"orange"
}

Using A Decoder

JSONDecoderDecodable
value of type T

Type to decode
to, and UTF-8
encoded Data

Using A Decoder

Data we got
from encoding

Advanced Usage:
Customizing How
Your Types are
Encoded/Decoded

{
 "firstName":"Roscoe",
 "color":"orange"
}

Q: What if I want to rename a key?

{
 "name":"Roscoe",
 "color":"orange"
}

A: Use CodingKeys

● Nested type that specifies the keys that will be used for encoding
● Compiler generated, but custom implementation can be provided

Compiler-
generated

default

Renaming a key

{
 "firstName":"Roscoe",
 "color":"orange"
}

Q: What if I want to modify properties as I
encode them?

{
 "name":"roscoe",
 "color":"orange"
}

{
 "name":"Roscoe",
 "color":"orange"
}

e.g. Convert a string to lowercase?

A: the Encodable.encode method

Encoder

Single
Value Unkeyed Keyed

one value sequence of values key/value pairs

provides containers:
views into storage

Encoding containers support storing three types of values.

nil

Bool, String, Double, Float
all Int and UInt types

Encodable type

base case 1: nil

base case 2:
primitives

recursive case

So how are these
containers used?

Encoder

KeyedEncodingContainer

name color

"Roscoe" "orange"

Encoder

KeyedEncodingContainer

name color

"Roscoe" "orange"

Encoder

KeyedEncodingContainer

name color

"Roscoe" "orange"

Compiler-generated defaults

Q: What if I want to modify properties as I
encode them?

{
 "name":"roscoe",
 "color":"orange"
}

{
 "name":"roscoe",
 "color":"orange"
}

e.g. Convert a string to lowercase?

Encoder

KeyedEncodingContainer

name color

"roscoe" "orange"

What if I have custom
types nested within
other types?

Let's make things more complicated...

{
 "name":"Kaitlin",
 "cats":[
 {
 "name":"Chester",
 "color":"tan"
 },
 {
 "name":"Roscoe",
 "color":"orange"
 }
]
}

Encoder

KeyedContainer
name cats

"Kaitlin"

Unkeyed

KeyedContainer
name color

"Chester" "tan"

KeyedContainer
name color

"Roscoe" "orange"

CatOwner

cats
cats[1]cats[0]

KeyedContainer
name color

"Roscoe" "orange"

Unkeyed

Encoder

name cats

"Kaitlin"

KeyedContainer

KeyedContainer

name color

"Chester" "tan"

KeyedContainer
name color

"Roscoe" "orange"

Unkeyed

Encoder

name cats

"Kaitlin"

KeyedContainer

KeyedContainer

name color

"Chester" "tan"

Encoding containers support storing three types of values.

nil

Bool, String, Double, Float
all Int and UInt types

Encodable type

base case 1: nil

base case 2:
primitives

recursive case

KeyedContainer
name color

"Roscoe" "orange"

Unkeyed

Encoder

name cats

"Kaitlin"

KeyedContainer

KeyedContainer

name color

"Chester" "tan"

Calls Array<Cat>.encode(to: self)

KeyedContainer
name color

"Roscoe" "orange"

Unkeyed

KeyedContainer

name color

"Chester" "tan"

Encoder

name cats

"Kaitlin"

KeyedContainer

Array<Cat>

Cat

Again, compiler and encoder do this for you!

{
 "name":"Kaitlin",
 "cats":[
 "Chester",
 "Roscoe"
]
} "Chester" "Roscoe"

UnkeyedContainer

Encoder

name cats

"Kaitlin"

KeyedContainer

Q: What if I want to flatten my data?

{
 "name":"Kaitlin",
 "cats":[
 "Chester",
 "Roscoe"
]
} "Chester" "Roscoe"

UnkeyedContainer

Encoder

name cats

"Kaitlin"

KeyedContainer

A: Single value containers

Single value
containers!

Flattening data

+ compiler generated CatOwner.encode

no CodingKeys needed!

{
 "name":"Kaitlin",
 "cats":[
 "Chester",
 "Roscoe"
]
} "Chester" "Roscoe"

UnkeyedContainer

Encoder

name cats

"Kaitlin"

KeyedContainer

Flattening data

Weren't we also talking
about decoding?

Decoder

KeyedDecodingContainer

name color

"Chester" "tan"

Compiler generated defaults

Customization Takeaways

● Use CodingKeys to customize which properties are
encoded/decoded, and what names they are encoded under
and decoded from

● Use custom encode(to:) and init(from:)
implementations to:

○ Transform data as you encode/decode it

○ Restructure your data

Super Advanced
Usage: Writing Your
Own Encoders and
Decoders

Why doesn't the API match the Encodable protocol?

Encoder != Encoder

_JSONEncoder:
Encoder

JSONEncoder

Why doesn't the API match the Encodable protocol?

private

Single encode method

Container API

More at https://tinyurl.com/encoder-protocol

JSONEncoder Structure

_JSONEncoder:
Encoder

_JSONEncodingStorage

JSONEncoder

private

JSONEncoder Structure

_JSONEncodingStorage

NSDictionary or NSArray

● NSArray if first container requested is unkeyed
● NSDictionary otherwise
● Container API is used to construct it
● Why use NS*?

○ JSONSerialization requires it

Get top-level object from privateEncoder
and pass it to JSONSerialization

Decoder != Decoder

JSONDecoder Structure

_JSONDecoder:
Decoder

_JSONDecodingStorage

JSONDecoder

private

JSONDecoder Structure

_JSONDecodingStorage

NSDictionary or NSArray

● NSArray if JSON array was provided
● NSDictionary if JSON object was provided
● Container API is used to read from it
● Why use NS*?

○ JSONSerialization requires it

Use JSONSerialization to create object from data

Limitations

● Not very performant
○ See https://tinyurl.com/benchmark-codable

● Lots of boilerplate/error prone in some cases
○ What if I have 20 properties and only want to omit

one?

Advantages

● The API makes Codable conformance trivial in many cases,

but also allows for very advanced customization when needed.

● The standardized approach makes it so any Encodable type

can be used with any Encoder, and any Decodable type can

be used with any Decoder.

Thank you!

Kaitlin Mahar
Software Engineer @ MongoDB

@k__mahar @kmahar

