
Swift's Encoder
and Decoder Protocols

Kaitlin Mahar
Software Engineer @ MongoDB

@k__mahar @kmahar

What is encoding?

EncoderSwift type External
representation

etc...

Scalar (e.g. Int)
struct
class
enum

What is encoding?

JSON
Encoder

What is decoding?

DecoderSwift type External
representation

etc...

Scalar (e.g. Int)
struct
class
enum

What is decoding?

JSON
Decoder

Swift 4 introduced a
standardized approach to
encoding and decoding.

How does it actually work?

Why does it matter?

● Customize how your types are encoded and decoded

○ Omit or rename properties, flatten nested structs...

● Write your own encoder and/or decoder

○ MongoDB driver

■ BSONEncoder: Swift type → MongoDB document

■ BSONDecoder: MongoDB document → Swift type

What we'll talk about

● The public API
● Internals
● Limitations

The Public API

An Encodable type knows how to
write itself to an Encoder.

● Automatic conformance if all properties are Encodable

● Types can provide custom implementations

● Format agnostic: write it once, works with any Encoder!

A Decodable type knows how to
initialize by reading from a Decoder.

● Automatic conformance if all properties are Decodable

● Types can provide custom implementations

● Write it once, works with any Decoder

Types With Built-In Codable Support

● Numeric types
● Bool
● String
● If the values they contain are Encodable / Decodable:

○ Array
○ Set
○ Dictionary
○ Optional

● Common Foundation types: URL, Data, Date, etc.

… and that's it!

Making Types Codable

Using Encoders and Decoders

Using An Encoder

JSONEncoderEncodable
value of type T

UTF-8
encoded Data

Using An Encoder

Why doesn't the API match the Encodable protocol?

_JSONEncoder:
Encoder

JSONEncoder

Why doesn't the API match the Encodable protocol?

private

● Not dictated by any protocol
● Allows setting top-level options

(e.g. DateEncodingStrategy)
● Simple API, just one method

● Implements Encoder protocol
● Actually does the encoding work
● More complex API (stay tuned)

Using A Decoder

JSONDecoderDecodable
value of type T

Type to decode
to, and UTF-8
encoded Data

Using A Decoder

Data we got
from encoding

_JSONDecoder:
Decoder

JSONDecoder

Why doesn't the API match the Decodable protocol?

private

Ok, so… what do these
protocols actually require?

Encoder

Single
Value Unkeyed Keyed

one value sequence of values key/value pairs

provides containers:
views into storage

In code...

SingleValueEncodingContainer

UnkeyedEncodingContainer

KeyedEncodingContainer<Key>

Encoder

Encoding containers support storing three types of values.

nil

Bool, String, Double, Float
all Int and UInt types

Encodable type

base case 1: nil

base case 2:
primitives

recursive case

nil

primitive

Encodable

SingleValueEncodingContainer

nil

primitive

Encodable

SingleValueEncodingContainer

UnkeyedEncodingContainer

Encodable

primitive

nil

KeyedEncodingContainerProtocol

CodingKey

KeyedEncodingContainer<Key>

Encoder

CodingKey

Requirements:
● Initializable by String

and/or Int
● Must have a String

representation
● May have an Int

representation

Synthesized conformance for enums!

Encoder

Single
Value Unkeyed Keyed

Unkeyed Keyed Unkeyed Keyed recursive case

Keyed

Unkeyed

UnkeyedEncodingContainer

KeyedEncodingContainerProtocol

Unkeyed

Keyed

So how are these
containers used?

Encoder

KeyedEncodingContainer

name color

"Chester" "tan"

Encoder

KeyedEncodingContainer

name color

"Chester" "tan"

Encoder

KeyedEncodingContainer

name color

"Chester" "tan"

Compiler generated!

But what if we don't want the defaults?

Encoder

KeyedEncodingContainer

firstName color

"Chester" "tan"
We can override just CodingKeys to
rename keys but keep the default
encode(to:) implementation.

But what if we don't want the defaults?

We can override just CodingKeys to
omit keys altogether.

Encoder

KeyedEncodingContainer

name

"Chester"

But what if we don't want the defaults?

Encoder

KeyedEncodingContainer

name color

"chester" "orange"Or we can override encode(to:) to
further customize behavior.

Let's make things more complicated...

Encoder

KeyedContainer
name cats

"Kaitlin"

Unkeyed

KeyedContainer
name color

"Chester" "tan"

KeyedContainer
name color

"Roscoe" "orange"

CatOwner

cats
cats[1]cats[0]

KeyedContainer
name color

"Roscoe" "orange"

Unkeyed

Encoder

name cats

"Kaitlin"

KeyedContainer

KeyedContainer

name color

"Chester" "tan"

KeyedContainer
name color

"Roscoe" "orange"

Unkeyed

KeyedContainer

name color

"Chester" "tan"

Encoder

name cats

"Kaitlin"

KeyedContainer

Alternatively...

KeyedContainer
name color

"Roscoe" "orange"

Unkeyed

name color

"Chester" "tan"

Encoder

name cats

"Kaitlin"

KeyedContainer

KeyedContainer

Again, compiler generated!

Weren't we also talking
about decoding?

Encoding: putting values into containers

Decoding: taking values out of containers

Decoder

Single
Value Unkeyed Keyed

Unkeyed Keyed Unkeyed Keyed recursive case

In code...
Decoder

SingleValueDecodingContainer

UnkeyedDecodingContainer

KeyedDecodingContainer<Key>

Decoding containers support retrieving three types of values.

nil

Bool, String, Double, Float
all Int and UInt types

Decodable type

base case 1: nil

base case 2:
primitives

recursive case

SingleValueDecodingContainer

nil

primitive

Decodable

nil

primitive

Decodable

UnkeyedDecodingContainer

KeyedDecodingContainerProtocol

nil

primitive

Decodable

Decoder

KeyedDecodingContainer

name color

"Chester" "tan"

Decoder

KeyedDecodingContainer

name color

"Chester" "tan"

Decoder

KeyedDecodingContainer

name color

"Chester" "tan"

Compiler generated!

Public API Takeaways

● Types opt in by conforming to Encodable and/or Decodable
● Many types get conformance for free, but can customize when

needed
● Public types (e.g. JSONEncoder) do *not* implement the

corresponding protocols!
● Encoders and Decoders used container-based APIs for

reading from/writing to storage
● The Encoder and Decoder APIs are very similar!

Underneath the Hood

Typical Structure

_MyEncoder
: Encoder

storage

private

MyEncoder

_MyDecoder
: Decoder

storage

private

MyDecoder

Storage

In what format do I store values while I am still in the middle
of encoding/decoding?

● JSON: NS* types that work with JSONSerialization.

● PropertyList: NS* types that work with PropertyListSerialization.

● BSON: types conforming to BsonValue that work with MongoDB documents.

How do I track where I am in the maze of nested containers?

● JSON, BSON, PropertyList: stack with whatever is backing the current
container on top

4 more small but important things to note:

1. SingleValueXContainer is often just implemented via an
extension of the private Encoder type.

2. The Encoder must enforce that only one value is written to a
SingleValueEncodingContainer.

3. There are various bookkeeping requirements on the protocols for
tracking the path of keys taken so far.

4. There are also superEncoder and superDecoder requirements for
use with classes.

Limitations

● Lots of boilerplate required for all of the containers, and
the different encode and decode methods that they
support

● Depending on design, you may end up duplicating a lot of
code from JSONEncoder etc.

● Types cannot be extended to become Decodable (but
should it be possible?)

In conclusion...

● The API makes Codable conformance trivial in many cases, but also allows

for very advanced customization when needed.

● The API makes it possible to write Encoders and Decoders that don't know

what the types using them look like, and makes it possible for types to write

encode methods without caring about the actual output format!

● Investigating the standard library source code and writing your own

encoder/decoder reveals some hidden requirements.

Thank you!

Kaitlin Mahar
Software Engineer @ MongoDB

@k__mahar @kmahar

